Growing Knowledge

Read the latest insights from our experts as they cover agronomy issues that matter most to you and your operation.

What We Learned From Analyzing 42,000 Tissue Samples in 2018

WinField United
Agronomy Team
Farmers submitted over 42,000 tissue samples for analysis by WinField United teams this year, and the data shows that crops could benefit from fertilization adjustments made in-season.
 
Nutrient trends and insights
Here are some nationwide trends revealed by tissue analysis conducted by WinField United in 2018.
 
  • Key essential nutrients for corn were limited. Corn plants could have benefitted from in-season nutrient applications based on analysis of over 26,000 tissue samples submitted from across the country. The most common deficiency was zinc; nearly 78 percent of sampled plants were short on the nutrient that aids in chlorophyll synthesis and other metabolic functions. Potassium, nitrogen, manganese and boron were also commonly deficient or responsive.
  • Soybeans had a sharp increase in copper deficiency. Nearly 75 percent of soybeans sampled lacked sufficient copper levels to meet plant health needs. This is up 10 percentage points compared to 2017 and 34 percentage points compared to 2016. Copper is a key nutrient for protein synthesis, cell wall formation and many enzyme systems. A majority of soybeans were also low in potassium based on analysis of over 8,400 soybean tissue samples.
  • Wheat lacked micronutrients. Chloride deficiency was widespread across wheat crops last year, with nearly 85 percent of sampled plants lacking adequate concentrations of the nutrient. Limited availability of chloride can disrupt plant metabolism, including water regulation in cells and plant enzyme activation. Copper, boron, zinc and magnesium were also limited in most wheat crop samples.
  • Cotton was deficient in potassium. Nearly 90 percent of cotton samples fell into the deficient or responsive category for potassium levels in 2018. Potassium is an essential nutrient that is important for fiber development in cotton. Phosphorus and copper were also commonly deficient based on over 1,300 cotton samples submitted for analysis.
  • Alfalfa was short on calcium. Similar to last year, over 90 percent of the more than 400 alfalfa samples analyzed had low levels of calcium in 2018. Calcium aids in nitrogen uptake and nutrient absorption, and it contributes to enzyme activity in plants. The majority of alfalfa samples were also short on magnesium and phosphorus.
 
Timing, source and rates matter
The WinField United sampling database includes more than 475,000 data points that help identify nutrient trends based on geography, soil type and environmental conditions. Based on analysis in 2018, it’s clear that a crop’s nutrient needs vary depending on growth stage, reinforcing the need for tissue sampling throughout the season. It’s not enough to know what nutrients may be limiting plant development. To optimize plant performance, consider the timing, source and rates of fertilizer applications.
 
Tissue sampling, combined with soil sampling, can help you assess crop nutrient availability to fine-tune fertilization applications. Now is a good time to speak with your local WinField United retailer to review sampling data and prepare fertilization plans for next year.

Jumpstart Plant Nutrition Programs

Jonathan Zuk
Regional Agronomist
Take advantage of precious time before planting to nail down your nutrient management strategy for the year to ensure you’re nourishing plants from the start of the season through all critical growth stages. Following are some ways you can get plant nutrition programs off to a strong start in corn.
 
  1. Ensure proper hybrid placement across your operation. The first step to setting plants up for success is getting hybrids placed right. For example, identifying the right soil type for the root structure a particular hybrid needs is critical to ensuring nutrients can get into the plant. I recommend using hybrid-specific data, available through the Answer Plot® program, including response to soil type (RTST) and response to population (RTP), and placing those hybrids accordingly.
 
  1. Give plants a pre-emergence nutrient boost. Once the hybrid is in the field, help get the plant out of the ground with an in-furrow application of phosphorus with zinc combined with a plant growth regulator. Ascend® plant growth regulator promotes larger roots, which helps more nutrients get into the plant quickly and efficiently, as well as faster emergence and stronger stalks to ensure the plant never has a bad day.
 
  1. Use hybrid-specific data and tissue sampling to plan in-season inputs. To be certain you’re getting needed nutrients into the plant from emergence throughout the vegetative growth stages, combine data on your particular hybrids with tissue samples. Response to nitrogen (RTN) and response to fungicide (RTF) can be used to determine how well that specific hybrid may respond to a nitrogen or fungicide application. If you have a hybrid that’s highly responsive to nitrogen and you’re planning to make a side-dress application, for instance, take a tissue sample to determine if there are other deficiencies like potassium, sulfur or zinc that you can address at that point. These nutrient components really make that nitrogen application become more efficient and help uncover the hidden hunger of your yield potential.
 
Keep in mind all of the tools available to you to make informed nutrient management decisions throughout the season, and work with your local agronomist to put similar practices to work for other crops in your operation.

High Management Is a Winner for Wheat

Tiffany Braasch
Master Agronomy Advisor
Kent Pfaff of Washburn, North Dakota, took first place this past December in the National Wheat Yield Contest in the Spring Wheat—Dryland category, harvesting 104.29 bushels per acre with CROPLAN® 3530. To me, more important than achieving this yield is that it also optimized his profit. As Kent’s local agronomist, I wanted to share some of the secrets to his success, which include timely input applications, in-season imagery and tissue sampling data.
 
Fertility crucial from preplant to in-season
Kent starts the season with a soil test to gauge fertility. At planting he applies a micronutrient package that contains zinc with his starter fertilizer. Plant roots, whether they are corn or wheat require zinc in higher amounts in early plant growth. He also treats his seed with Warden® Cereals WR, a product that contains both fungicide and insecticide that protects seedlings from disease and insects early in the growing season. In addition to Warden® Cereals WR, he also uses Ascend® plant growth regulator to help enhance the growth and development of wheat early in the season.
 
Kent customizes a variable-rate nitrogen prescription for each field. This helps him hit his high-end yield goals on the highest-fertility part of his field while backing off on his tougher or less productive areas. He starts with the response to nitrogen (RTN) recommendations for his variety when planning the prescription. Kent variable-rate applies his nitrogen in the form of anhydrous ammonia and applies it side dressed at the same time as seed and starter fertilizer. Like many farmers in our area who use no-till or minimum-till systems, Kent uses this “one-pass” system for his small-grain crops.
 
Follow recommended populations 
Kent followed the CROPLAN® response to population (RTP) scores in determining planting rate, in this case 1.5 million seeds per acre. With other wheat varieties, he may have gone up to 1.8 million seeds per acre; but with CROPLAN® 3530, he optimized yield at a lower planting rate. Managing each variety according to Answer Plot® Program recommendations is key.
 
Maximize acre-by-acre management
In addition to using the R7® Tool to variable-rate apply his nitrogen, Kent is using the R7® Field Monitoring Tool and in-season imagery to track day-to-day performance on all fields in his operation. Early season between third and fifth leaf, he applies herbicides for weed control. At the same time, the use of an insecticide and fungicide helps control disease and insects on the wheat. Another application of fungicide at heading helps control late season disease such as scab. He felt there was yield left on the table by not investing in a flag leaf application. CROPLAN® 3530 has a high response to fungicide (RTF) scores, and we will evaluate this season to determine if another application at flag leaf might optimize his return. Kent says that to him, as a farmer the bottom line is that we achieved a high yield but, more important, improved profitability.
  
Winning with Wheat
Kent and the other National Wheat Yield Contest winners will be honored at the Commodity Classic farm trade show, to be held in San Antonio, Texas, in early March. Congratulations to Kent on this exciting and well-deserved honor. If you want to find out more about the National Wheat Yield Contest, click here. To find out more about how you can increase the yield potential of your spring wheat crop, talk with your local agronomist.

Follow Best Plant Sampling Practices for Accurate Analysis

WinField United
Agronomy Team
Understanding plant health and nutrient deficiencies begins establishing a baseline for fertility programs. The WinField® United NutriSolutions® 360 system is a season-long fertility management program, including soil and tissue sampling, lab analysis, and product recommendations. Review these guidelines and contact your local WinField® United agronomist for sampling recommendations.
  1. Perform timely sampling. Crops use nutrients differently at various growth stages, so not all crop samples should be taken at the same time. Sampling before crops need key nutrients allows time to adjust fertility plans in-season. Work with a trusted agronomy advisor to determine appropriate timing to acquire the most accurate data.
  2. Be selective in tissue choice. Choosing healthy plant material for sampling is imperative for accurate analysis. Plants under stress from drought, flooding, insect or disease pressure will likely show different nutrient readings than healthy areas of a field. For comparison purposes, stressed areas of a field may be sampled to measure differences in nutrient utilization. The NutriSolutions® 360 tissue testing handbook provides crop-specific tissue sampling timing and protocols.
  3. Collect enough plant tissue. Follow lab directions to ensure the proper amount of leaf tissue is collected for testing. The volume of tissue needed may depend on crop and growth stage. For example, a corn plant sample should be about the size of a softball when bunched up to account for drying that takes place before lab analysis.
  4. Select random plants. Take a big-picture look at the field you plan to sample to get the best results. The goal is to take enough samples randomly throughout the field to get an accurate snapshot of overall plant health. If the field is stressed, more samples should be taken to account for field variability. Avoid sampling plants that have necrotic tissue due to early senescence or disease. Imagery from the R7® Tool can also help identify areas of the field where tissue testing should be completed.
  5. Avoid contamination. Lab equipment is sensitive and will report false results if tissue is contaminated. Avoid submitting samples that may be contaminated by fertilizer residue or soil. If using tools to collect samples, clean them between plants to avoid transferring tissue from one sample to another.
  6. Plan ahead. Sampling at the beginning of the week will allow plenty of time for shipping to the lab. Pack and ship samples according to lab directions; extreme temperatures can negatively affect tissue quality. NutriSolutions 360® sampling requires specific tissue bags to prevent mold formation. Take inventory of your shipping supplies and invest in high-quality materials to ensure your samples arrive at the lab in good condition.

Research Shows Nationwide Plant Health Trends

WinField United
Agronomy Team
Understanding plant health is key to meeting crop yield potential. A study in the Agronomy Journal1 estimates that up to 60 percent of yield is dependent on soil fertility; but soil fertility alone doesn’t tell the whole story. The NutriSolutions 360® system from WinField® United is a season-long plant health management program, including soil and tissue sampling, nutrient analysis, and recommendations to help farmers optimize growing conditions for their crops. More than 410,000 plant samples have been analyzed nationwide over several growing seasons with 92,775 samples taken in 2016, revealing crop- and area-specific nutrient deficiencies that could negatively impact yield potential.
 
Nutrient Trends and Insights
Here are some nationwide trends revealed by NutriSolutions 360® tissue analysis in 2016.
 
  • Corn was deficient in zinc, potassium and nitrogen. Seventy-two percent of the more than 17,500 corn samples taken nationwide were low in zinc. Sixty-eight and 66 percent of corn samples were low in potassium and nitrogen, respectively. Other problem nutrients in corn included manganese, sulfur and boron — all were over 60 percent deficient in 2016 samples.
  • Soybeans lacked potassium. Sampling revealed that 78 percent of the more than 5,500 soybean samples taken in 2016 were low in potassium. Soybean samples also lacked manganese and copper (53 and 42 percent respectively).
  • Wheat exhibited micronutrient deficiencies. More than 90 percent of 2016 wheat samples showed low levels of chloride, which is important for photosynthesis and nutrient transport in wheat. Zinc and/or magnesium levels were low in more than 60 percent of samples. Copper and potassium deficiencies were also common in wheat in 2016.
  • Cotton showed issues with potassium deficiency. Most of the more than 2,500 cotton samples showed low levels of potassium in 2016. Cotton is more susceptible to root and leaf diseases when potassium is limited. Large amounts of the nutrient are needed as bolls begin to develop and fill, so potassium deficiency can also decrease yields. Boron and/or calcium levels were also low in around half the cotton samples received.
  • Alfalfa was short on calcium and magnesium. Calcium deficiency in alfalfa can inhibit root growth and plant development. More than 93 percent of the over 800 alfalfa samples had low levels of calcium in 2016. Low levels of magnesium were also reported.
  • Corn silage nutrient deficiencies included phosphorus, manganese, nitrogen and zinc. Corn silage can remove more nutrients from soil than corn grain, so additional fertilization may be needed on these acres. More than 50 percent of corn silage samples tested in 2016 were deficient in phosphorus, manganese, nitrogen and/or zinc.

Tissue Sampling Can Help Boost Yield Potential
Once deficiency is visible in the field, it’s often too late to correct. Tissue sampling allows insight into a crop’s nutrient status before deficiencies become visible. This allows for corrective action prior to yield loss. Following a solid soil sampling plan and executing a proactive approach to tissue sampling is key to crop success.
 
While nationwide trends in crop health were analyzed and reported, individual field testing is the best way to evaluate nutrient deficiencies. Plant health is dynamic, and nutrient availability is based on localized conditions and management practices.
 
1Stewart, W. M., D. W. Dibb, A. E. Johnston, and T. J. Smyth. 2005. The Contribution of Commercial Fertilizer Nutrients to Food Production. Agron. J. 97:1-6.

Displaying results 1-5 (of 8)
 |<  < 1 - 2  >  >| 

Subscribe to the Advisor Newsletter

Sign up for monthly agronomic insights and product information.